Published on 16/05/2024
Share this Article:
Aston University researcher receives £1 million grant to revolutionise miniature optical devices
credit: Dragon Claws/shutterstock.com
  • Miniature optical devices to be developed for use across manufacturing, IT and agriculture  
  • Grant has been given by the Engineering and Physical Sciences Research Council 
  • Devices so small they are measured in picometres – a picometre is one trillionth of a metre.

An Aston University researcher has received more than £1 million to deliver optical devices that are so small they sit on the surface of an optical fibre which can be used in manufacturing, IT and agriculture.

The £1,167,290 grant has been given by the Engineering and Physical Sciences Research Council (EPSRC) for the Picometer Surface Nanoscale Axial Photonics (PicoSNAP) project. 

The award will be used to develop Surface Nanoscale Axial Photonics (SNAP) technology which enables the fabrication of miniature photonic devices.

Traditionally, the precision of microscopic devices has been constrained by the size of atoms, with fabrication technologies plateauing at several nanometres – a nanometre being one billionth of a metre. 

However, PicoSNAP technology, which was pioneered by Professor Misha Sumetsky of Aston Institute of Photonic Technologies (AIPT), has enabled devices to be scaled down even further so they can be measured in picometres – a picometre is one trillionth of a metre.

The spread of light in SNAP devices differs to regular optical fibres, because light spirals along the perimeter of the fibre and slowly moves along its length, instead of travelling through the core

At the moment SNAP devices are not suitable to go to market, so the project will explore making them ready for practical applications across industries ranging from information technology to precision manufacturing and sensing.

Professor Sumetsky is aiming to develop a reliable manufacturing process to enable production of the devices that is both ultra-accurate and easy to reproduce. If successful, the project will not only bring in a new revolutionary technology but also deliver miniature optical devices with performance not previously possible to achieve, and ready for practical applications.

He said: “The lack of reliable, scalable manufacturing processes with picometre precision remains a major obstacle, and SNAP technology has the potential to address this need with its exceptional precision and performance.

“The goal of this project is the development of the process, which requires  insight into the depth of associated physical phenomena, as well as the design and fabrication of new microdevices critical for the future communication, optical signal processing, microwave and sensing technologies, for applications ranging from food industry to fundamental science.   

"We envision a high demand for the miniature optical devices we plan to design and fabricate in this project.
"This grant underscores how Aston University's strategy is driving impactful research that addresses real-world challenges."

The project will start in September 2024 and is expected to end in August 2028.

The announcement coincides with UNESCO Day of Light which marks the role light plays in science, culture and art, education and sustainable development. It is held on 16 May every year, the anniversary of the first successful operation of a laser.
 

Notes to editor

Notes to Editors 
UNESCO Day of Light
The International Day of Light is a global initiative that provides an annual focal point for the continued appreciation of light and the role it plays in science, culture and art, education, and sustainable development, and in fields as diverse as medicine, communications, and energy. The broad theme of light will allow many different sectors of society worldwide to participate in activities that demonstrates how science, technology, art and culture can help achieve the goals of UNESCO – education, equality, and peace.
The International Day of Light is held on May 16th every year, the anniversary of the first successful operation of the laser in 1960 by physicist and engineer, Theodore Maiman. The laser is a perfect example of how a scientific discovery can yield revolutionary benefits to society in communications, healthcare and many other fields.

About Aston University
For over a century, Aston University’s enduring purpose has been to make our world a better place through education, research and innovation, by enabling our students to succeed in work and life, and by supporting our communities to thrive economically, socially and culturally.
Aston University’s history has been intertwined with the history of Birmingham, a remarkable city that once was the heartland of the Industrial Revolution and the manufacturing powerhouse of the world.
Born out of the First Industrial Revolution, Aston University has a proud and distinct heritage dating back to our formation as the School of Metallurgy in 1875, the first UK College of Technology in 1951, gaining university status by Royal Charter in 1966, and becoming The Guardian University of the Year in 2020.
Building on our outstanding past, we are now defining our place and role in the Fourth Industrial Revolution (and beyond) within a rapidly changing world.
For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk
 

 

Sue Smith,
Head of Press and Communications

 

Sam Cook,
Press and Communications Manager

 

Nicola Jones,
Press and Communications Manager

 

Helen Tunnicliffe,
Press and Communications Manager

 

Alternatively, email