Published on 06/09/2024
Share this Article:
Aston University develops novel bone cancer therapy which has 99% success rate
Professor Richard Martin
  • Bioactive glasses, doped with gallium developed to create a potential treatment for bone cancer
  • Lab tests have a 99 percent success rate of killing cancerous cells 
  • Method could also regenerate diseased bones.


Bioactive glasses, a filling material which can bond to tissue and improve the strength of bones and teeth, has been combined with gallium to create a potential treatment for bone cancer.

Tests in labs have found that bioactive glasses doped with the metal have a 99 percent success rate of eliminating cancerous cells and can even regenerate diseased bones.

The research was conducted by a team of Aston University scientists led by Professor Richard Martin who is based in its College of Engineering and Physical Sciences.

In laboratory tests 99% of osteosarcoma (bone cancer) cells were killed off without destroying non-cancerous normal human bone cells. The researchers also incubated the bioactive glasses in a simulated body fluid and after seven days they detected the early stages of bone formation. 

Gallium is highly toxic, and the researchers found that the ‘greedy’ cancer cells soak it up and self-kill, which prevented the healthy cells from being affected. Their research paper Multifunctional Gallium doped bioactive glasses: a targeted delivery for antineoplastic agents and tissue repair against osteosarcoma has been published in the journal Biomedical Materials.

Osteosarcoma is the mostly commonly occurring primary bone cancer and despite the use of chemotherapy and surgery to remove tumours survival rates have not improved much since the 1970s. Survival rates are dramatically reduced for patients who have a recurrence and primary bone cancer patients are more susceptible to bone fractures. 

Despite extensive research on different types of bioactive glass or ceramics for bone tissue engineering, there is limited research on targeted and controlled release of anti-cancer agents to treat bone cancers.

Professor Martin said: “There is an urgent need for improved treatment options and our experiments show significant potential for use in bone cancer applications as part of a multimodal treatment.

“We believe that our findings could lead to a treatment that is more effective and localised, reducing side effects, and can even regenerate diseased bones.

“When we observed the glasses, we could see the formation of a layer of amorphous calcium phosphate/ hydroxy apatite layer on the surface of the bioactive glass particulates, which indicates bone growth.”
The glasses were created in the Aston University labs by rapidly cooling very high temperature molten liquids (1450o C) to form glass. The glasses were then ground and sieved into tiny particles which can then be used for treatment.  

In previous research the team achieved a 50 percent success rate but although impressive this was not enough to be a potential treatment. The team are now hoping to attract more research funding to conduct trials using gallium.

Dr Lucas Souza, research laboratory manager for the Dubrowsky Regenerative Medicine Laboratory at the Royal Orthopaedic Hospital, Birmingham worked on the research with Professor Martin. He added: “The safety and effectiveness of these biomaterials will need to be tested further, but the initial results are really promising. 
“Treatments for a bone cancer diagnosis remain very limited and there’s still much we don’t understand. Research like this is vital to support in the development of new drugs and new methodologies for treatment options.”
 

Notes to editors

Multifunctional Gallium doped bioactive glasses: a targeted delivery for antineoplastic agents and tissue repair against osteosarcoma


Shirin B. Hanaei1, Raghavan C. Murugesan1, Lucas Souza1, Juan I.C. Miranda1, Lee Jeys2,3, Ivan B. Wall3, and Richard A. Martin1
1. College of Engineering and Physical Sciences. Aston University, Aston Triangle, Birmingham, B4 7ET, UK
2. Oncology Department, The Royal Orthopaedic Hospital, Birmingham, B31 2AP, UK
3. College of Health and Life Sciences. Aston University, Aston Triangle, Birmingham, B4 7ET, UK


DOI 10.1088/1748-605X/ad76f1

About Aston University
For over a century, Aston University’s enduring purpose has been to make our world a better place through education, research and innovation, by enabling our students to succeed in work and life, and by supporting our communities to thrive economically, socially and culturally.
Aston University’s history has been intertwined with the history of Birmingham, a remarkable city that once was the heartland of the Industrial Revolution and the manufacturing powerhouse of the world.
Born out of the First Industrial Revolution, Aston University has a proud and distinct heritage dating back to our formation as the School of Metallurgy in 1875, the first UK College of Technology in 1951, gaining university status by Royal Charter in 1966, and becoming The Guardian University of the Year in 2020.
Building on our outstanding past, we are now defining our place and role in the Fourth Industrial Revolution (and beyond) within a rapidly changing world.
For media inquiries in relation to this release, contact Nicola Jones, Press and Communications Manager, on (+44) 7825 342091 or email: n.jones6@aston.ac.uk
 

 

Sue Smith,
Head of Press and Communications

 

Sam Cook,
Press and Communications Manager

 

Nicola Jones,
Press and Communications Manager

 

Helen Tunnicliffe,
Press and Communications Manager

 

Alternatively, email