Published on 10/05/2022
AI traffic light system could make traffic jams a distant memory
  • New artificial intelligence system developed by Aston University researchers. 
  • The system reads live camera footage and  adapts the lights to compensate
  • In testing, the system significantly outperformed all other methods

Long queues at traffic lights could be a thing of the past, thanks to a new artificial intelligence system developed by Aston University researchers. 

The system – the first of its kind – reads live camera footage and  adapts the lights to compensate, keeping the traffic flowing and reducing congestion. The work is detailed in the paper ‘Fully-Autonomous, Vision-based Traffic Signal Control: from Simulation to Reality’ which is is being presented at the Autonomous Agents and Multi-agent Systems Conference 2022 today (11 May).

The system uses deep reinforcement learning, where a program understands when it is not doing well and tries a different course of action – or continues to improve when it makes progress. 

In testing, the system significantly outperformed all other methods, which typically rely on manually-designed phase transitions. 

In 2019, it was estimated that congestion across the UK’s urban areas leads to the average UK resident wasting around 115 hours of time – and £894 in fuel waste and lost income – every year. A major cause of congestion is inadequate traffic signal timings. 

The researchers built a state of the art photo-realistic traffic simulator, Traffic 3D, to train their program, teaching it to handle different traffic and weather scenarios. When the system was tested on a real junction, it subsequently adapted to real traffic intersections despite being trained entirely on simulations. It could therefore be effective in many real-world settings. 

Dr Maria Chli, reader in Computer Science at Aston University, explained: “We have set this up as a traffic control game. The program gets a ‘reward’ when it gets a car through a junction. Every time a car has to wait or there’s a jam, there’s a negative reward. There’s actually no input from us; we simply control the reward system.”

At present, the main form of traffic light automation used at junctions depends on magnetic induction loops; a wire sits on the road and registers cars passing over it. The program counts that and then reacts to the data. Because the AI created by the Aston University team ‘sees’ high traffic volume before the cars have gone through the lights and makes its decision then, it is more responsive and can react more quickly. 

Dr George Vogiatzis, senior lecturer in Computer Science at Aston University, said: “The reason we have based this program on learned behaviours is so that it can understand situations it hasn’t explicitly experienced before. We’ve tested this with a physical obstacle that is causing congestion, rather than traffic light phasing, and the system still did well. As long as there is a causal link, the computer will ultimately figure out what that link is. It’s an intensely powerful system.”

The program can be set up to view any traffic junction – real or simulated - and will start learning autonomously. The reward system can be manipulated, for example to encourage the program to let emergency vehicles through quickly. But the program always teaches itself, rather than being programmed with specific instructions. 

The researchers hope to begin testing their system on real roads this year. 

The research paper, Fully-Autonomous, Vision-based Traffic Signal Control: from Simulation to Reality, is being presented at the Autonomous Agents and Multi-agent Systems Conference 2022 being held virtually this week. (9-13 May 2022).

Notes to Editors

Photos available via Dropbox link (Please credit Aston University) 
Link to full paper: ‘Fully-Autonomous, Vision-based Traffic Signal Control: from Simulation to Reality’ by Deepeka Garg, Maria Chli, George Vogiatzis.  

For more information, contact:
Samantha Rey, Campus PR; M: (+44) 7977 469088; E: samantha@campuspr.co.uk 
or Nicola Jones, Press and Communications Manager, Aston University, M: (+44)7825 342091,  E: n.jones6@aston.ac.uk


About Aston University
Founded in 1895 and a University since 1966, Aston is a long established UK university led by its three main beneficiaries – students, business and the professions, and our region and society. Aston University is located in Birmingham and at the heart of a vibrant city and the campus houses all the university’s academic, social and accommodation facilities for our students. Saskia Loer Hansen is the interim Vice-Chancellor & Chief Executive.

Aston University was named University of the Year 2020 by The Guardian and the University’s full time MBA programme has been ranked in the top 100 in the world in the Economist MBA 2021 ranking. The Aston MBA has been ranked 12th in the UK and 85th in the world. 

Be first to get the latest news, research and expert comment from Aston
by 
following us on Twitter

Need an expert for your story? Browse our expert directory

 

Sue Smith, Head of Press and Communications
    0121 204 3521
    s.p.smith@aston.ac.uk

Sam Cook, Press and Communications Manager
    0121 204 5065
    s.cook2@aston.ac.uk

Rebecca Hume, Press and Communications Manager
    0121 204 5159
    r.hume@aston.ac.uk

Nicola Jones, Press and Communications Manager
  •  07825 342091
    n.jones6@aston.ac.uk

Alternatively, email pr@aston.ac.uk

News Archive

Press Team

Media Resources

Brexit Directory

The Conversation

Expert Directory