.

Dr Petra (Mariana) Hanga

Lecturer in Biomedical Engineering

Tel: +44 (0) 121 204 3161
Email: m.hanga@aston.ac.uk
Room: MB438F

School of Life & Health Sciences
Aston University
Aston Triangle, B4 7ET

Dr Petra (Mariana) Hanga

 Imagine you are a Senior Scientist that was asked to develop a process for manufacturing Stem Cells to be used as Cell Therapies to target a wide range of diseases. Where would you start?

My whole carrier to date, I have been trained exactly for this scenario. In 2007, I have graduated with Honours as a Biochemical Engineer from Babes-Bolyai University in Cluj-Napoca, Romania. After working as a Chemical Engineer in Cluj-Napoca, Romania for 1.5 years, I have decided that Chemical Engineering is not sufficiently challenging for me. As a result, in 2009, I have moved countries to start my PhD as part of the Doctoral Training Centre in Regenerative Medicine at Loughborough University, UK. During my PhD project, I have addressed one of the key challenges in the manufacturing of Stem Cells and that was focused on non-enzymatic and non-damaging cell harvesting at the end of the culture. During my PhD, I have designed and engineered a proof-of-concept temperature-responsive microcarrier to be used as cell attachment substrate at large scales in bioreactors. These microcarriers were cheap to produce and allowed for non-enzymatic cell harvest in situ by simply lowering the temperature from 37ºC (physiological temperature) to room temperature.

After developing a taste for Regenerative Medicine and Stem Cells, in 2014, I have started working on an even more challenging and exciting project funded by the BBSRC Bioprocessing Research Industry Club (BRIC) which is a closed member club with strong links to industry, having companies such as Pall Life Sciences, GSK, MedImmune, ReNeuron, Fujifilm Diosynth Biotechnologies and many others involved. This project focused on addressing the same challenge, but from a different perspective by developing and designing an alternative and cost-effective cell culture process based on a liquid/liquid two phase system, to be used at large scales in bioreactors. In this scenario, the cells attached to ‘temporary microcarriers’ and at the end of the process, cell harvest was achieved by disassembling the temporary microcarriers.

  • 2014 – PhD in Regenerative Medicine, Doctoral Training Centre in Regenerative Medicine, Loughborough University, UK
  • 2007 – MEng (Hons) Biochemical Engineering, Babes-Bolyai University, Cluj-Napoca, Romania
  •  January 2017 – to date: Lecturer in Biomedical Engineering, School of Life and Health Sciences, Aston University, Birmingham, UK
  • January 2014 – December 2016: Postdoctoral Research Associate, Centre for Biological Engineering, Loughborough University, Loughborough, UK
  • BI4110 – Applied Biotechnology (Module Leader)
  • BE3BRM – Biotechnology and Regenerative Medicine (Module Leader)
  • BI4060 – Stem Cells and Tissue Engineering (Lecturer on Biomaterials in regenerative Medicine and Scale up and Storage of Stem Cells)

To date, my research interests lie at the intersection of Bioprocess Engineering and Stem Cell Therapy. In the upcoming years, my research in stem cell bioprocessing will be taken forward by building on the existing knowledge with the aim to move towards the production of an ‘off-the-shelf’ readily available allogeneic Cell Therapy. However, I consider myself an interdisciplinary scientist and my research interests are extended to Tissue Engineering and Biomedical Engineering with special attention to Biomaterials and their potential to addressing critical healthcare problems. As such, my research plan extends to the use of biomaterials to target the repair of spinal cord injuries or for cell encapsulation to target diseases such as diabetes.

  • 2016 – 2019: AUTOSTEM – Development of a closed, scalable and automated robotic system for therapeutic Stem Cell manufacturing. Funded by EU Commission (Horizon 2020), €6,000,000 (Aston Award €549,956) – Co-Investigator since January 2017.
  • 2016 – 2018: Establishment of a safe, robust, repeatable end-to-end process to produce stem cells for therapeutic use. Funded by InnovateUK KTP & Biovault Technical (£268,791) – Co-Investigator since January 2017.

 

  • To start in April 2017: Jack Jordan (Supervisor; Petra Hanga; Co-supervisors: Eric Hill, Chris Hewitt)
  • Available to take up PhD students in subjects related to Stem Cells, Biomaterials, Biotechnology.
  • BBSRC Bioprocessing Research Industry Club (BRIC)
  • BioIndustry Association
  • Tissue and Cell Engineering Society (TCES)
  • ESACT UK