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a b s t r a c t

Edges are key points of information in visual scenes. One important class of models supposes that edges
correspond to the steepest parts of the luminance profile, implying that they can be found as peaks and
troughs in the response of a gradient (1st derivative) filter, or as zero-crossings in the 2nd derivative
(ZCs). We tested those ideas using a stimulus that has no local peaks of gradient and no ZCs, at any scale.
The stimulus profile is analogous to the Mach ramp, but it is the luminance gradient (not the absolute
luminance) that increases as a linear ramp between two plateaux; the luminance profile is a blurred tri-
angle-wave. For all image-blurs tested, observers marked edges at or close to the corner points in the gra-
dient profile, even though these were not gradient maxima. These Mach edges correspond to peaks and
troughs in the 3rd derivative. Thus Mach edges are inconsistent with many standard edge-detection
schemes, but are nicely predicted by a recent model that finds edge points with a 2-stage sequence of
1st then 2nd derivative operators, each followed by a half-wave rectifier.

! 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Edges are key points of information in visual scenes. But despite
much research it remains uncertain how edges are extracted from
the eye’s neural output. It is widely accepted that the retinal image
is filtered by even- and odd-symmetric spatial filters at various
scales, early in the visual pathway (Burr, Morrone, & Spinelli,
1989; Field & Nachmias, 1984; Hubel & Wiesel, 1968; Pollen &
Ronner, 1981; Ringach, 2002) but how the filters are used in fea-
ture detection remains an open question. Early psychophysical
work proposed an edge-detector role for odd-symmetric filters
and a bar-detector role for even-symmetric filters (Kulikowski &
King-Smith, 1973; Shapley & Tolhurst, 1973). This could be true,
but as many have pointed out, such a simple interpretation is
incomplete because the ‘edge-detectors’ also respond to bars, and
the ‘bar-detectors’ respond to edges (Fig. 1), with peak responses
offset to left or right of the feature in question. The interpretive
parsing rules of MIRAGE (Watt & Morgan, 1985) and the quadratic
summation of even and odd responses in the local energy model
(Morrone & Burr, 1988) were both motivated by the need to re-
solve that ambiguity.

One attractive general view of receptive fields in early vision is
that they act as spatial derivative operators (Lindeberg, 1994; Marr
& Hildreth, 1980; ter Haar Romeny, 2003; Watt & Morgan, 1985;
Young, 1985; Young & Lesperance, 2001). For example, summation
of the output of the two regions of the odd-symmetric receptive
field shown in Fig. 1 (left) is equivalent to obtaining the difference

in luminance between these two regions. If this filter is convolved
with a 1-D image, then the output at each point is proportional to
the spatial luminance gradient (the 1st derivative), after a degree
of smoothing that is determined by the scale (size) of the receptive
field (Fig. 1, middle row). By a similar argument (with an increas-
ing number of receptive field regions) filters can be obtained that
compute the 2nd, 3rd or any higher derivative.

Edge detection models based on derivative computation often
suppose that edges correspond to the steepest parts of the lumi-
nance profile, implying that they can be found as peaks and
troughs in the response of a 1st derivative (gradient) filter (Berg-
holm, 1987; Canny, 1986; Korn, 1988; Sarkar & Boyer, 1991; Zhang
& Bergholm, 1997), or as zero-crossings in the 2nd derivative (El-
der & Zucker, 1998; Georgeson, 1992; Marr & Hildreth, 1980; Watt
& Morgan, 1985).

The third spatial derivative has until recently played an ancil-
lary role in edge-detection schemes. Zero-crossings (ZCs) in the
2nd derivative occur both at maxima and minima of gradient mag-
nitude (Clark, 1989). Clark regarded the minima (points of locally
shallowest slope) as spurious edges, and showed from standard
calculus how ZCs could be classed as ‘real’ or spurious from the
sign of the product of the 1st and 3rd derivatives at the ZC. A neg-
ative sign identifies a real edge while a positive sign identifies a
spurious one. Thus the 3rd derivative was used to categorize edges
found at ZCs in the 2nd derivative.

Important theoretical developments, in the framework of
Gaussian scale-space theory, were made by Lindeberg (1998)
who used peaks in the multi-scale 1st derivative to find edge loca-
tions, and then used the multi-scale 3rd derivative to determine
the strength and blur of each edge. This was followed by a step that
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provided a measure of the saliency of each edge by integrating
edge strength along the contour. By selecting a restricted number
(such as 100) of the most salient curves, the algorithm produced
an effective line drawing of a variety of test images.

In this paper we ask whether the 3rd derivative may be used di-
rectly for edge-finding in human vision. At first sight, it appears
unpromising because a 3rd derivative filter generates not only a
peak at the edge location, but also a pair of flanking troughs, thus
apparently signalling two spurious edges of opposite polarity adja-
cent to the ‘real’ edge (Fig. 2A). Georgeson, May, Freeman, and
Hesse (2007) however, showed that decomposing the 3rd deriva-
tive into two stages overcomes the problem of spurious edges
(Fig. 2B). This scheme – a 1st derivative operator followed by an in-
verted 2nd derivative, with half-wave rectification on the output of
each stage – creates a nonlinear channel sensitive to edges of a gi-
ven polarity, but the peak response to a preferred edge is unaf-
fected by the nonlinearities (Fig. 2B). The multi-scale model

(called N3+) based on this approach predicted very well the per-
ceived blur of a wide variety of edge-like waveforms, including
sinusoids. May and Georgeson (2007) further showed that the
addition of a smooth, threshold-like suppression of small values
at the first rectifier accounted well for the finding that reducing
contrast made blurred edges appear sharper. The success of N3+,
however, did not rule out a simpler multi-scale gradient model
(N1), based solely on the 1st derivative, which performed fairly
well in edge-finding and blur coding in many circumstances. Our
aim therefore was to devise a more definitive experimental test
across the family of derivative-based models of edge-finding out-
lined above.

The idea is inspired directly by the phenomenon of Mach bands,
whose well-known ramp waveform has no peaks or troughs in
luminance, but does have a peak and a trough in the 2nd derivative
at the perceived location of the bright and dark bands. This logic
can be shifted up by one derivative order, to test the role of 3rd
derivative extrema in edge detection. The 1st derivative of our
stimulus is defined by a Mach ramp between two plateaux, thus
ensuring that the 3rd derivative (rather than the 2nd) has a peak
and a trough at the ends of the ramp, If edges are reliably seen at
these points, in the absence of gradient maxima, then we propose
that they be called ‘Mach edges’, by direct analogy with Mach
bands.

Our experiments are therefore a search for Mach edges. We de-
signed luminance waveforms that contained peaks in the 3rd
derivative but had no corresponding peaks in the 1st derivative
or zero-crossings in the 2nd derivative, at any scale. We then used
the feature-marking method (Hesse & Georgeson, 2005) to deter-
mine whether edges were perceived in these stimuli, and if so
where. We consider a simplified version of the N3+model that uses
filters at a single fine scale, which we shall refer to as the sN3+
model (‘s’ meaning ‘single-scale’). Since the N3+ and sN3+ models
produce very similar predictions for our stimuli, we can simplify
the multi-scale aspect of N3+ while retaining the ability to test
its use of derivative filters and half-wave rectification.

2. Experiment 1

The purpose of this experiment is to test for the existence of
Mach edges: that is, to determine whether edges are reliably seen
at or near 3rd derivative extrema in luminance waveforms de-
signed to have no corresponding gradient maxima.

2.1. Stimulus design

Since the absence of peaks in the 1st derivative was of prime
importance, the starting point was to create a peak-free waveform
representing the gradient profile, and then integrate it to form the
luminance profile. The gradient profile (Fig. 3) was a single period
of a trapezoidal wave whose ramps were 1, 2, 4, 8, 16, 32 or 64 pix-
els wide. This was integrated to form the luminance profile of the
vertical 1-D test image. The luminance profile can equivalently be
described as a triangle-wave blurred by a box function whose
width ranged from 1 to 64 pixels. We shall refer to this width as
‘blurwidth’.

The stimulus design is analogous to the Mach band stimulus,
but it is the luminance gradient (not the absolute luminance) that
increases as a linear ramp between two plateaux. Two example
images, their luminance waveforms and first three derivatives
are shown in Fig. 3. A graph of the luminance profile reveals no
obvious edge locations: a uniform positive gradient shades
smoothly into a uniform negative one. It has no peak in the 1st
derivative and no ZC in the 2nd derivative, so no edges are pre-
dicted by models based on these derivative features. That remains

e

Fig. 2. Two blurred edges and their first three derivatives. The 3rd derivative is
shown inverted. (A) Sequence of derivatives computed without half-wave rectifi-
cation. (B) Sequence of derivatives computed with half-wave rectification after the
1st and 3rd derivatives were obtained. Responses suppressed by rectification are
shown by dashed lines. Key property of this nonlinear model (sN3+) is that a single
response peak occurs at the positive-going (dark-to-light) edge location. A second,
complementary channel is needed for edges of the opposite polarity (cf. Fig. 9).
(Note: each derivative was computed inMatlab by convolution with the small-scale,
3-point gradient operator whose weights were [!0.5, 0, 0.5].)

Fig. 1. Receptive fields of odd-symmetric and even-symmetric filters (left, in plan
view and cross-section), and their responses (right) to the blurred bar and edge
shown in the top row. Note that each filter responds to both features.
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true at all filter scales, because Gaussian smoothing does not intro-
duce any new peaks (Babaud, Witkin, Baudin, & Duda, 1986;
Koenderink, 1984; Lindeberg, 1990; Yuille & Poggio, 1986). How-
ever, Fig. 3 shows that there is a sharply localised peak and trough
in the 3rd derivative corresponding to the corner points in the gra-
dient profile. If such peaks and troughs are taken as the signature
of edges, then human observers should see two edges, of opposite
polarity, at these locations.

2.2. Method

Image arrays were generated in Matlab on a Macintosh G4 com-
puter and displayed using PsychToolbox software on an Eizo 6600-
M greyscale monitor, calibrated and gamma-corrected using a
Minolta LS110 digital photometer. A Cambridge Research Systems

Bits++ box was used in Mono++ mode to render 14-bit greyscale
resolution.

Images had one of two polarities: ‘peak central’ (see Fig. 3), or a
contrast inversion of this named ‘trough central’. Image size was
256 by 256 pixels and subtended 4" at the viewing distance of
131.6 cm. Test images had Michaelson contrasts of 0.2 or 0.4 and
were surroundedby a full-screen (16" " 12")mid-grey of luminance
40.7 cd/m2. Theywere displayed flashing (on 0.3 s, off 0.6 s) in order
to reduce the build-up of afterimages that would cause instability
and possible shifts in edge location (Georgeson & Turner, 1985).
The inter-stimulus display was a full-screen of mid-grey.

The task was to indicate the position and polarity of all edges
seen in each image. Their position was identified by moving a mar-
ker across the image and pressing a button when the marker was
over an edge. A second button-press indicated the polarity of the
edge as either light-to-dark (LD) or dark-to-light (DL). Once all
the perceived edges had been marked, the observer initiated the
next trial. The marker consisted of two black dots, each 1 pixel
wide by 3 pixels high. One dot was centred 32 pixels (0.5") above,
and the other 32 pixels below, the horizontal midline of the image.
The observer was instructed to fixate midway between the two
dots. The starting position of the marker alternated between left
and right on successive trials, and was 64 pixels (1") from the im-
age border. Its movement was constrained to the central 2.5" of the
image. The 28 conditions (7 blurwidths, two phases, two contrast
levels) were presented in randomised order, blocked by contrast.
This procedure was repeated a further two times in one experi-
mental session, which took about 30 min to complete.

The three observers (SAW, DHB and TAY) were all experienced
psychophysical observers and had normal uncorrected vision. They
viewed the display binocularly with natural pupils in a darkened
room, with the head supported by a chin-and-forehead rest. They
each completed three sessions, giving a total of nine repetitions
of each condition per observer.

2.3. Results: Mach edges

Observers reliably saw pairs of edges at positions to the left and
right of the luminance peaks and troughs in each image. We shall
refer to these edges perceived without gradient peaks as Mach
edges. Plots of perceived edge position against blurwidth are
shown in Fig. 4 (symbols). Data were similar for all three observers

Fig. 3. Two images from Experiment 1 (blurwidths two and 32 pixels, peak central),
their luminance waveforms and first three (linear) derivatives. The 1st derivative
profiles have the form of a Mach ramp.

Fig. 4. Experiment 1. Perceived edge locations as a function of blurwidth. Symbols show group mean data at two contrast levels, for dark-to-light edges (DL, filled symbols)
and light-to-dark edges (LD, open symbols). Positions of peaks in the two nonlinear 3rd derivative channels are shown by solid curves. Dashed curves show the effect of
including simulated Gaussian blur (a = 4.6 arc min) before the derivative operators. 64 pixels = 600 . Left: peak-central waveform; right: trough-central waveform. Error-bars
(±1 standard error) are plotted behind symbols and show between-observer variation (n = 3).
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and group means are shown. The perceived separation between
those edges increased markedly with blurwidth.

Solid curves in Fig. 4 trace the positions of peaks in the sN3+
output derived from the luminance profile (i.e. with half-wave rec-
tification after the 1st and 3rd derivative operation, cf. Fig. 2B). For
this class of waveforms (but not in general), the outcome is almost
identical to that for the linear 3rd derivative without rectifiers. The
overall correspondence between observed edges and 3rd deriva-
tive extrema is strikingly close. In contrast, standard models based
on the lower derivatives predict no edges here. A 1st derivative fil-
ter at a broad scale does have peaks at the mid-points of the lumi-
nance ramps (at position x = ±64 pixels), but these points were not
marked as edges. At small blurwidths, the observed edges were
systematically further apart than the 3rd derivative extrema by
about 3.30, considered further below.

Because it is linear, the 3rd derivative operator predicts the
same edge positions for peak-central and trough-central condi-
tions, but with reversed polarity, and this light-dark symmetry is
not affected by the rectification stages of the sN3+ model. Fig. 4
shows, however, that in the experiment the two edges were seen
as slightly further apart in the peak-central than the trough-central
conditions, by an average of 1.90. This appears to be an example of
the Helmholtz irradiation effect which may arise from compressive
nonlinearity in the retinal response to luminance (Georgeson &
Freeman, 1997; Mather & Morgan, 1986).

2.3.1. No effect of edge length or marker location
We wondered whether the greater-than-predicted separation

between edges at small blurwidths might arise from an influence
of larger receptive fields in peripheral vision, given that the image
height was quite large (4"). If this were so, we might expect the
Mach edges to appear closer together when the image was trun-
cated to exclude the peripheral contribution.

Methods were as above, except (i) image height was reduced to
8, 16 or 32 pixels (still 256 pixels wide), (ii) only one contrast level
(0.4) was used, (iii) only four blurwidths were used (1, 4, 16 and
64 pixels) and (iv) marker-spots were 8 pixels above and below
the image borders, on the mid-grey background. Results (Fig. 5)
were very similar to those of the main experiment (Fig. 4) and
any effect of image truncation was small. Rather than being closer
together, the perceived edges were, if anything, a little further
apart when most truncated (triangles in Fig. 5). Thus the contribu-
tion of peripheral retina does not appear to be crucial. A further
experiment that used a single marker-spot on the image mid-line

gave almost identical results (not shown), suggesting that the
placement of the marker-spots on the image, or on the grey back-
ground, was also not an important factor.

2.3.2. Optical and neural blur
The sN3+ predictions (Figs. 4 and 5) were computed at a single

fine scale, neglecting any impact of optical blur (Campbell & Gu-
bisch, 1966; Williams, Brainard, McMahon, & Navarro, 1994) or
neural ‘intrinsic’ blur (Levi & Klein, 1990a, 1990b). To gauge the
likely influence of blur, we applied Gaussian blur to the luminance
profile before computing the sN3+ peaks. Gaussian blur had little
effect on the predicted position of the widely separated Mach
edges (high blurwidth images), but for low blurwidth images re-
sponse peaks were shifted away from centre. The dashed lines in
Fig. 4 show that the simulated blur gave an improved and very
close match between predictions and data (without blur: rms
error = 3.1 pixels, Pearson’s X2 = 1540; with blur: rms
error = 2.3 pixels, Pearson’s X2 = 823; this improvement in the X2

goodness-of-fit, distributed as chi-square with 1 d.f., is hugely sig-
nificant, p < 0.00001). The best fitting blur (with lowest rms error)
was a = 4.60. This is far too large to represent dioptric blur alone,
but could reflect the scale of the filter used by the observer in this
task.

2.3.3. Pre-cortical filtering?
Odd-symmetric filters (including 1st and 3rd derivatives) nec-

essarily have oriented receptive fields, and so presumably would
be implemented by cortical neurons. We should not ignore, how-
ever, the possible role of earlier filtering in the retina or LGN. We
found that applying a broad, mildly bandpass Difference-of-Gauss-
ian (DoG) filter (Fig. 6A), similar in shape to the contrast sensitivity
function, followed by gradient peak detection, did enable Mach
edges to be detected and did predict the observed edge positions
well (Fig. 6B). This is not too surprising, because to the extent that
the DoG filter emulates a 2nd derivative operator (Marr & Hildreth,
1980), this revised gradient (DoG + 1st derivative) model is analo-
gous to a 3rd derivative filter. The gradient filter alone does not
predict Mach edges. We therefore devised a further experiment
to distinguish between the revised-gradient and sN3+ models.

3. Experiment 2

The aim of this experiment is to distinguish between the two
competing models (sN3+ vs DoG + 1st derivative) that can

Fig. 5. Mean observed positions of dark-to-light (DL) and light-to-dark (LD) edges in blurred triangle-wave images of three different heights (8, 16, 32 pixels). Other
conventions as Fig. 4.

S.A. Wallis, M.A. Georgeson / Vision Research 49 (2009) 1886–1893 1889
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account for the results of Experiment 1. The success of the DoG
+ 1st derivative model rests specifically on the low-frequency
attenuation provided by the DoG’s inhibitory surround. Without
this attenuation the 1st derivative alone, as we have seen, does
not predict Mach edges. Experimentally, we can attempt to by-
pass this low-frequency attenuation in two ways: (i) by using
a brief presentation (e.g. 50 ms) that reduces the relative atten-
uation of sensitivity to low spatial frequencies in the CSF (Legge,
1978) and (ii) by shrinking the spatial period of the triangle-
wave, and thus increasing the fundamental frequency to (say)
4–6 c/deg, near the peak of the MTF (Fig. 6A). The test image
then contains only high frequencies (P4 c/deg), which are not
subject to low-frequency attenuation by the early pre-filter. If
Mach edges remain visible in high frequency, blurred triangle-
wave gratings then they are unlikely to arise from DoG + 1st
derivative filtering.

3.1. Method

Test images (Fig. 7A) were a high spatial frequency version of
those used in Experiment 1. One set contained 16 cycles of a
blurred triangle-wave (512 pixels wide; period 32 pixels), gener-
ated as in Experiment 1. Blurwidth was 1, 2, 4 or 8 pixels with
the usual two polarities (peak or trough central). Since each period
occupied only 1/8 the number of pixels used in Experiment 1, each

level of blurwidth shown here is equivalent, in its effect on wave-
form shape, to eight times the previous amount of blurring.

These waveforms were also used to create a second set of
images, by shifting their Fourier phases through 90", while leaving
the amplitude spectrum unchanged. This produced blurred wave-
forms that were akin to a square-wave, but whose amplitude spec-
trum (before the blurring) declined as 1/f2, rather than 1/f, where f
is spatial frequency of the (odd) harmonics. For brevity, we refer to
these as ‘square-waves’ though strictly they are not. The triangle-
wave image (Fig. 7A, left) appears to contain a thin light (or dark)
bar of high contrast at the centre of each wide light (or dark) bar.
These thin bars are not apparent in the square-wave image
(Fig. 7A, right). Predictions of the two models (sN3+ and DoG +
1st derivative) will be considered later.

The test images subtended 2.67" " 2.67", with a fundamental
frequency of 6 c/deg, at a viewing distance of 383 cm (observer
SAW). For the second observer (SEW) viewing distance was re-
duced to 255 cm (fundamental frequency 4 c/deg) because she
was unable to discriminate between the triangle-wave and
square-wave images at 6 c/deg. The test images were surrounded
by a full-screen of mid-grey luminance and viewed in a darkened
room. RMS contrast (the ratio of the standard deviation of the
luminance profile to its mean) was the same for both triangle-wave
and square-wave images at a given blurwidth. A consequence of
matching the RMS contrasts was that Michaelson contrast for the
triangle-wave images was 0.4, while that of the square-wave
images was 0.32, 0.32, 0.33 and 0.37 for blurwidths 1, 2, 4 and 8,
respectively. A subsidiary experiment controlled this factor by
matching Michaelson contrast instead of RMS contrast.

Before data collection began, each observer was shown a pair of
3 c/deg stimuli (blurwidth 8 pixels), and itwas confirmed that a pair
of closely spaced edges was easily visible in the centre of each half-
periodof the triangle-wave imagebut not in the square-wave image.

The task was a single-interval procedure requiring a yes–no
decision about the presence or absence of the Mach edges. Each

Fig. 7. Experiment 2. (A) Four periods of the two types of images used. Here
blurwidth = 4, period = 32 pixels.(B) One period of the waveforms at blurwidth one
and blurwidth eight. These were the smallest and largest blurs used in Experiment
2.

Fig. 6. (A) The difference of Gaussian (DoG) receptive field profile and its MTF. The
equation for this 1-D DoG function was DoG(x) = G(x, rc) ! K#G(x, rs), where
Gðx;rÞ ¼ expð!x2=ð2r2ÞÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi
2pr2

p
, with sc = 10 , ss = 60 , K = 0.5. These parameters

correspond closely to the median values given by Croner and Kaplan (1995) for
P-cells in the monkey central retina, allowing for the translation from 2-D to 1-D.
(B) Results of the peak-central condition (Fig. 4) with predictions from the sN3+
(dashed curve, rms error = 3.1 pixels) and the DoG + 1st derivative model (solid
curve, rms error = 2.9 pixels).

1890 S.A. Wallis, M.A. Georgeson / Vision Research 49 (2009) 1886–1893
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trial consisted of a single stimulus presentation of 50 ms, preceded
and followed by a full-screen of mid-grey showing a central small
fixation dot (4 " 4 pixels = 1.25 " 1.25 min). The observer had
unlimited time to indicate the presence or absence of a central pair
of edges in one or more half-periods of the grating. The inter-trial
interval was at least 1s. Each of the four blurwidths, two image-
types and two polarities were shown 15 times in a randomised
block. The two observers each completed nine blocks. The first
block from each subject was discarded as practice. No feedback
was given about the correctness of response because this experi-
ment was concerned with the perception of Mach edges, rather
than the ability to distinguish between the triangle-wave and
square-wave images per se, which could be based on other image
properties (such as the edge blur of the wide bars in the image).
Nevertheless, we can make use of signal detection measures (d0)
to quantify the reliability with which Mach edges were reported.

3.2. Results

For each observer, the proportion of ‘yes’ responses was similar
for the peak- and trough-central images, so data were pooled
across both polarities. Z-scores corresponding to the proportion
of ‘yes’ (Mach edge) responses for each condition, averaged across
stimulus polarity, are shown as filled symbols in Fig. 8. Both
observers had a significantly higher proportion of ‘yes’ responses

for the triangle-wave than the square-wave images, except per-
haps at the greatest blur. Z-scores overall were higher for SAW
than SEW, implying a lower criterion on the internal decision axis
for SAW.

Treating ‘yes’ responses to the triangle stimulus as Hits, and
those to the square stimulus as False Alarms, the discriminability
index (d0) was calculated in the standard way as Z(yes|triangle)
minus Z(yes|square), plotted as open symbols in Fig. 8. The d0 val-
ues were all significantly greater than zero (except for SEW, blur 8),
implying that both observers reliably associated Mach edges with
the triangle-wave rather than the square-wave test images. Both
observers showed a general trend of decreasing discriminability
as blurwidth increased. At each blurwidth, d0 values for the highly
practised observer (SAW) were higher than for SEW.

To test whether discrimination might be cued by the lower
Michaelson contrast of the square-wave images, observer SAW re-
peated the experiment with images whose Michaelson contrast
was always 0.4. Results were similar to those from the original im-
age set, implying no artefactual effect of contrast difference.

3.3. Modelling

The results of Experiment 2 show that Mach edges were reliably
reported in blurred triangle-wave images that were high-spatial-
frequency, short-duration versions of the images used in Experi-

Fig. 8. Experiment 2. Z-scores corresponding to the proportion of Mach edge responses (filled symbols), and discriminability (d0 , open symbols), averaged across stimulus
polarity, plotted as a function of blurwidth. Each filled symbol represents 240 trials and error bars (±1 sd) are derived from the expected variance in binomial sampling. Each
open symbol (d0) represents the difference of the two Z-scores, and error bars here are the square root of the sum of the expected variances of the triangle and square-wave Z-
scores at a given blurwidth.

Fig. 9. Experiment 2. One cycle of the luminance waveforms at blurwidth four, with predictions of the DoG + 1st derivative model and the sN3+ model. [Note: for the latter,
positive values are the output of the nonlinear cascade of filters that detects dark-to-light edges (Fig. 2, right); negative values are the inverted output of the opposite channel
whose 1st derivative stage is inverted, and which thereby detects light-to-dark edges.] The DoG + 1st model did not predict Mach edges for this experiment.

S.A. Wallis, M.A. Georgeson / Vision Research 49 (2009) 1886–1893 1891
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ment 1. The use of high-frequency gratings is expected to by-pass
the influence of the DoG pre-filter’s inhibitory surround, as out-
lined above, and so offer a critical test between two models.
Fig. 9 shows the DoG + 1st derivative output and the sN3+ output
for this experiment, at blurwidth 4. For the square-wave (Fig. 9,
right) both models produced peaks and troughs, and hence pre-
dicted edges, separated by half a period. These are not Mach edges.
For the triangle-wave (Fig. 9, left), the DoG + 1st model again pre-
dicted half a period separation. The sN3+ model however yields a
closely spaced peak-and-trough pair separated by about 1=4 period.
These are Mach edges. It is evident from Fig. 9 that the spatial
arrangement of edges seen in both the square- and triangle-wave
cases is explained by extrema in the sN3+, while the DoG + 1st
derivative fails to account for Mach edge perception in the
triangle-wave case.

4. Discussion

Experiment 1 showed that observers reliably marked the posi-
tion and polarity of ‘Mach edges’. These are visible edges seen at
points on a luminance waveform where there was no peak in the
1st derivative and no zero-crossing in the 2nd derivative. Standard
edge detectors that are based on these derivative features must
therefore have great difficulty in accounting for Mach edges, but
we have shown that using peaks and troughs in the 3rd derivative
to locate edges readily predicts the occurrence, location and polar-
ity of the Mach edges. The predicted and observed locations agreed
especially well when a plausible amount of Gaussian smoothing
was introduced (Fig. 4) that might represent the scale of the most
sensitive filter for these stimuli.

We found that one way of rescuing the 1st derivative approach
was to introduce a centre–surround (DoG) filter (Fig. 6), perhaps
representing pre-cortical filtering, before the gradient operator.
But, in a critical test, this model did not predict the Mach edges that
were reliably observed at high spatial frequencies in Experiment 2,
whereas the 3rd derivative model did do so. The ‘rescue’ of the DoG
+ 1st model might be extended to higher spatial frequencies by
making the pre-filter even smaller, but the cost of this ad hoc mod-
ification would be to make the model increasingly similar to a 3rd
derivative, thus underlining our point that peaks in the luminance
gradient are insufficient to account for human edge-finding.

Our main aim in this paper was to contrast edge-finding models
based on different orders of spatial derivative: 1st, 2nd and 3rd. Of
these candidates, it seems clear that only the 3rd derivative offers a
straightforward account of Mach edges. Of course, the Mach edges
do leave some ‘fingerprint’ in the lower derivatives: they sit at or
near the corner points in the gradient profile and at or near the
abrupt steps in the 2nd derivative (Fig. 3). But we emphasize (a)
that those features in the 1st and 2nd derivative are not the ones
that have been widely proposed as edge markers (namely, gradient
peaks or 2nd derivative ZCs), and (b) that those features have to be
made explicit in some way, and finding peaks in an appropriate
higher derivative (the 3rd) seems a straightforward and general
way to do so. It is general because, as well as locating Mach edges,
the peaks and troughs in the 3rd derivative also locate the more
familiar (sharp or blurred) step edges that do give rise to gradient
peaks and ZCs (Fig. 2). Thus the 3rd derivative seems the most par-
simonious because the same rule accounts for Mach edges and step
edges, but this is not true for the 1st and 2nd derivatives where dif-
ferent rules would be needed.

The linear 3rd derivative operator produces too many peaks
and troughs for step edges (Fig. 2, left), but this need not trouble
us, because the two-stage nonlinear 3rd derivative (Georgeson
et al., 2007) solves that problem in a physiologically plausible
way (Fig. 2, right), and gives very accurate predictions about per-

ceived edge location and blur, without introducing any other dif-
ficulties that we are aware of. For the Mach edge (blurred
triangle) waveforms, even the linear 3rd derivative gives a single
peak (or trough) at the observed edge (Fig. 3), and so the presence
or absence of these interesting nonlinearities is immaterial for
those waveforms. In a broader context, the half-wave rectifiers
are crucial in making the 3rd derivative a viable and general basis
for edge detection.
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