1. Errata from *Netlab* book

1.1 Errata in third printing (2004).

- Page 82, equation 3.10: should read

\[
p(x|j) = \frac{1}{(2\pi)^{d/2} \prod_{i=1}^{d} \sigma_{j,i}} \exp\left\{ -\sum_{i=1}^{d} \frac{(x_i - m u_{j,i})^2}{2\sigma_{j,i}^2} \right\}.
\]

- Page 242, lines 3 and 4 of listing of `gmmsamp` should read

```plaintext
3  mix.U(:, :, j)* ...
4  (diag(mix.lambda(j, :))-(mix.covars(j)*eye(mix.ppca_dim)))* ...
5  (mix.U(:, :, j)');
```

- Page 385, line 18 of `gperr` should read:

```
18  e2 = (sum(eprior, 1))*(1./net.pr_var);
```

1.2 Errata from second printing (2003), fixed in third printing (2004).

- Page 42, equation 2.14: should read

\[
\frac{(x - b)^2}{2} f''(b) \leq \epsilon |f(b)|
\]

\[
\iff |x - b| \leq \sqrt{\frac{2\epsilon |f(b)|}{|f''(b)|}} = b \sqrt{\frac{2 |f(b)|}{b^2 |f''(b)|}}.
\]

- Page 43, equation 2.17: should read

\[
x = b - \frac{1}{2} \frac{(b - a)^2 [f(b) - f(c)] - (b - c)^2 [f(b) - f(a)]}{(b - a) [f(b) - f(c)] - (b - c) [f(b) - f(a)]}.
\]
• Page 74, equation 2.74: should read
\[\nabla P_Q(x) = \nabla f + \rho(g^T \nabla g). \]

Line 10 in the definition of the function gradcon should read
\[gc = fgrad + rho*(g*ggrad'); \]
(This has also been corrected in the software download).

• Page 88, equation 3.15: should read
\[((x - \mu_j)C^{-1}) * ((x - \mu_j)C^{-1}) \]

• Page 133, para. 2, line -4: should read ‘to initialise the parameter \(w \) reasonably close to the maximum.’

• Page 276, listing of canvar: lines 14–40 should read

```matlab
14 S_W = zeros(nin, nin);
15 N_c = zeros(1, nclasses);
16 for c = 1:nclasses
17    N_c(c) = sum((t(:, c) == 1), 1);
18    if (N_c(c) > 1)
19        S_W = S_W + ((N_c(c)-1)/ndata) * cov(x(find(t(:, c)==1), :));
20    end
21 end
22 % Between class covariance matrix
23 Sigma = cov(x, 1); % Ensure normalisation by ndata
24 S_B = Sigma - S_W;
25 % Now compute canonical variates using generalised eigenvalues
26 [temp_cvecs, temp_cvals] = eig(S_B, S_W);
27 % Sort values and vectors into descending order
28 Tc = diag(temp_cvals);
29 [cvals perm] = sort(-Tc);
30 cvals = -cvals(1:N);
31 if cvals == Tc(1:N)
32    % Originals were in order
33    cvecs = temp_cvecs(:, 1:N);
34    return
35 else
36    % Need to reorder the eigenvectors
37    for i=1:N
38        cvecs(:,i) = temp_cvecs(:,perm(i));
39    end
40 end
```

The significant changes are in lines 16–23, where we ensure that the covariance matrices are scaled by \(n \).

• Page 328, equation 9.5: should read
\[E(y|x^*, D) = \int y \, p(y|x^*, D) \, dy, \]
• Page 340, equation 9.21: should read
\[\frac{\partial E_{\text{W}}}{\partial w_i} = \alpha w_i, \]

1.3 Errata from first edition, first printing (2002), fixed in second printing

• Page IX, para. 3, line 3: should read ‘The attraction of this model, which is discussed in Chapter 10, . . .’.
• Page IX, para. 4, line 4: should read ‘This free software is covered by a very open license based on that used for BSD.’
• Page X1, para. 2, line 5: Markus Svensén’s name is mis-spelled. Sorry, Markus.
• Page 53, equation (2.30): should read
\[\lambda_j = \begin{cases} 0 & g_j^T H d_j = 0 \\ g_j^T g_j & \text{otherwise.} \end{cases} \]

• Page 74, equation (2.4) should read
\[\nabla P_Q(x) = \nabla f + \rho(\hat{g}^T \nabla g). \]

and, correspondingly, in the second program, line 10: should read
10 \(gc = fgrad + rho*(g*ggrad'); \)
• Page 74, third program, line 1: should read
1 function \([y, x] = \text{optcon}(x, fn, gradf)\)
• Page 94, line 40 of the program should read
40 \(\text{mix.covars}(:,:,j) = \text{mix.covars}(:,:,j) + \ldots \)
• Page 118, equation (4.4) should read
\[y_j = \frac{\exp(a_j)}{\sum_{j'} \exp(a_{j'})}. \]
• Page 147, equation (4.60) should read
\[w_1 = \sum_{i=1}^{r} \left(\frac{\sigma^2 t_i}{\sigma^2 + \alpha^2 \gamma^2} \right) v_i. \]

• Page 151, equation (5.7) should read
\[y_k = \frac{\exp(a_k^{(2)})}{\sum_{k'} \exp(a_{k'}^{(2)})}. \] (1.1)

• Page 241, first code fragment, lines 16–22 should be replaced by

```matlab
for j = 1:mix.ncentres
    c = x(find(post(:,j)),:);
    diffs = c - (ones(size(c, 1), 1) * mix.centres(j, :));
    [tempcovars, tempU, templambda] = ... ppca((diffs'*diffs)/size(c, 1), mix.ppca_dim);
    if length(templambda) ~= mix.ppca_dim
        error('Unable to extract enough components');
    else
        mix.covars(j) = tempcovars;
        mix.U(:, :, j) = tempU;
        mix.lambda(j, :) = templambda;
    end
end
```

• Page 242, equation (7.30) should read
\[WW^T + \sigma^2 I = U_q(A_q - \sigma^2 I)U_q^T + \sigma^2 I. \]

and the code fragment just above it should read

```matlab
1 case 'ppca'
2    covar = mix.covars(j) * eye(mix.nin) + ...
3    mix.U(:, :, j) = diag(mix.lambda(j, :)) - ...
4    diag(mix.covars(j))) * (mix.U(:, :, j)');
```

• Page 244, equation (7.32) should read
\[p(x|W, \sigma) = \int p(x|z, W, \sigma)p(z) \, dz. \]

• Page 277, caption to Figure 7.15 should read ‘Demonstration of canonical variates. The two classes are indicated by circles and crosses respectively. The canonical variate (dashed line) and first principal component (solid line) are clearly contrasted.’
• Page 329, line 1 should read ‘If we use a weight prior $p(w^{(i)}_{MP}|M_i)$ that is uniform over some large region . . . ’.
• Page 353, code fragment for `fevbayes`, lines 8–13 should be replaced by

```matlab
8 ntest = size(x_test, 1);
9 var = zeros(n test, 1);
10 for idx = 1:1:net.nout,
11     for n = 1:1:ntest,
12         grad = squeeze(g(n,:,idx));
13         var(n,idx) = grad*invhess*grad';
14     end
15 end
```

• Page 394, para. 2, line 2: should read ‘an iterative algorithm, . . . ’.