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Category learning induces position invariance of recognition

Abstract

Human object recognition is considered to be Igrgetariant to translation across the visual
field. However, the origin of this invariance tosinal changes has remained elusive, since
numerous studies found that the ability to disonate between visual patterns develops in a
largely location-specific manner, with only a lietk transfer to novel visual field positions. In
order to reconcile these contradicting observatisagdraced the acquisition of categories of
unfamiliar grey-level patterns within an interledvearning and testing paradigm that involved
either the same or different retinal locations. @sults show that position invariance is an
emergent property of category learning. Patteregmaies acquired over several hours at a fixed
location in either the peripheral or central vistiald gradually become accessible at new
locations without any position-specific feedbackirtRermore, categories of novel patterns
presented in the left hemifield are distinctly éadearnt and better generalized to other locations
than those learnt in the right hemifield. Our résaliggest that during learning initially position-
specific representations of categories based otmaspattern structure become encoded in a
relational, position-invariant format. Such reprgséional shifts may provide a generic

mechanism to achieve perceptual invariance in dobgaognition.
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1. INTRODUCTION

Our ability to recognize familiar objects is sugingly robust against displacements of such
objects within the visual field (Ellist al. 1989; Biederman & Cooper 1991; Stankiewicz &
Hummel 2002). However, the explanation of this fhmeanon of position invariance has proved
difficult since psychophysical studies have fouattgrn-discrimination learning to be largely
location-specific, with only a limited potentialrfszansfer to novel visual field positions (Foster
& Kahn 1985; Nazir & O'Regan 1990; Dill & Fahle I89.998). These seemingly contradictory
observations at the behavioural level are notyastonciled by neurophysiological findings.
Neurons in the inferotemporal cortex (IT), an aseerucial importance for object recognition in
primates, typically show large receptive fieldgyraperty that has previously been linked to
translational response invariance (Rolls 1992)ti@mther hand, more recent evidence indicates
that response behaviour of IT cells is affectedther factors as well and may show a far greater
sensitivity to retinal position than predicted legeptive field size (DiCarlo & Maunsell 2003;
Rolls et al. 2003). Such modulation effects and the fact thgais may be represented by the
combined activity of neuronal populations (Haxdiyal. 2001) make it difficult to predict the
effect of stimulus displacement on the overall oese of the visual system on the basis of
receptive field properties alone.

Our approach to resolve this debate is based amatien that object recognition proper
relies on previously acquired stimulus categoriRssch 1978), and on evidence that learning
involves changes in the internal representatioratégories (Schyret al. 1998; Rentschler &
Jittner 2007) that may also affect the invariamopgrties of such representations (Jutated.
2004). To maximize the potential impact of categearning on the development of position-
invariant object recognition we took advantage fué fact that for the discrimination of
unfamiliar (i.e. unlearned) structure-only stimulg. patterns that only differ in the spatial
arrangement of their constituent parts rather tharshape of those parts, position invariance is
broken (Dill & Edelman 2001). On this basis we dasd classes of unfamiliar patterns that were
defined by the spatial composition of their consrit parts. Our stimuli were Compound Gabor
gratings, two-dimensional grey level patterns \aithell-defined, one-dimensional part structure
in terms of bright and dark bars along their hantabsymmetry axis. The use of such patterns
allowed us to confine positional changes to oneetlisional displacements along the horizontal

meridian across the visual field. Furthermore, Coamal-Gabor gratings represent an elementary



Category learning induces position invariance of recognition

stimulus type in early visual processing (Watsginal. 1983; Westheimer 1998) that is
perceptually highly unfamiliar, thus stimulatingtaing while minimizing confounding effects
of prior knowledge (Juttner & Rentschler 1996, 2000

We used a set of fifteen Compound Gabor patteraswilere defined within a two-
dimensional Fourier feature space (figligg. This feature space allowed to define stimuhkin
low dimensional “form continuum?”, within which eapbint uniquely defines the appearance of
a pattern and clusters of points are used to defasses to be learned by the subject. Observers
were trained to classify the patterns employingragigm of interleaved learning and testing that
involved either the same or different retinal lo@as$ during the learning and testing phase of
each learning unit (figurga). The experiments consisted of an induction stdgeng which
learning and testing involved the same retinaltiocaand two transfer stages, during which the
test location was shifted to a novel position whsrhe learning location remained unchanged.
Using this paradigm we explored to what extentg@ieal pattern knowledge during learning
could be transferred from the left visual field [EMo the right visual field (RVF), the RVF to

the LVF, and from extrafoveal to foveal vision,vice versa.

2. MATERIAL AND METHODS

(a) Subjects

Thirty paid observers (age range 19 to 32 yeandicjgzated in the study, with ten subjects (5
female, 5 male) being assigned to each of the #xperiments reported. All participants were
right-handed and had normal or corrected-to-nomsibn. None of them had any prior

experience with psychophysical experiments. Alleggneir informed consent prior to the study.

(b) Stimuli

A set of fifteen compound Gabor gratings, consgsbha fundamental plus its third harmonic
within a Gaussian aperture, served as learningmpat(figurel). The stimuli were generated on
a computer (Research Machines PC; Matrox Millenz#b0 graphics) and displayed on 17-inch
monitor (EIZO F56; spatial resolution of 1024 »84tixel; refresh rate 75 Hz). Space average
luminance was kept constant at 60 cd/fthe fundamental of the Gabor stimuli had a spatia
frequency was 2.4 cycles/deg and an amplitude otlA@f. The patterns subtended 1.7 deg at a

viewing distance of 101 cm when seen foveallyhim 3 deg off-axis viewing conditions, the
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stimulus size was re-scaled to 2.7 deg accordirgpttical magnification (Rovamo & Virsu

1979). Eccentricity was measured between the @rgibint and the centre of stimulus patterns.

(c) Interleaved learning and testing

The experiments used an interleaved learning atith¢gprocedure (Juttner & Rentschler 1996,
2000) that was split into a variable number ofiéay units. Each of them consisted of a learning
(L) phase and a test (T) phase (figRag During the learning phase, the patterns ofehenling

set were successively presented for 200 ms. Edtdrpavas shown three times in random order,
and each presentation was followed, after an itieutus intervall of 500 ms, by a number, that
was displayed for 1000 ms and specified the cayeafdhe pattern. The test phase employed the
same temporal parameters for stimulus presentdmnever, each pattern was shown only once
and subjects had to indicate the category of éanlulsis by pressing the corresponding key. No
feedback on the correctness of the response was.gihe series of learning units, i.e. the
alternating sequence of learning and testing, naetl until either the observer had achieved a
criterion of 100% correct in a test phase, or hasspd 40 learning units without achieving it.

Each experiment was divided into three stages,mhgction and two transfer stages
(figure 2b). During induction (IN) the viewing locations dng the learning (L) phases and test
(T) phases of each learning unit were identicafinduthe two transfer stages (T1 and T2), the
viewing locations during learning and testing beeahssociated from each other. Participants
proceeded through these stages in one-hour sedg@ippsoximately 10 learning units per
session) on consecutive days. Upon completioneafithuction stage or transfer stage T1 at least
two learning units of the following stage were penfied within the current session to include the
transition between consecutive stages.

Throughout all experiments subjects had to fixaterdral fixation point on the computer
display. Patterns were presented on the horizomtaldian either in the left visual field (LVF;
eccentricity of -3 deg relative to the fixatiomget), in the right visual field (RVF; eccentricity
+3 deg), or centrally (eccentricity O deg). Viewialyvays was binocular. The short stimulus
duration of 200 ms ensured a presentation to aistens retinal location and discouraged
saccadic eye movements. Eye movements were notenathi Pilot experiments with controlled
eye position in the context of previous studieslempg similar stimuli and viewing conditions

(Jattner & Rentschler 1996) showed that for thevabearning paradigm fixation errors or
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erroneous saccades are infrequent (less than 8%%lsf due to the highly repetitive nature of the
task.

Experiment 1 contrasted two conditions, in whialshbjects learnt the patterns (during
the L phase of each learning unit) either in theFR'Z1) or in the LVF (C2). During the
induction stage of the experiment the subjects \aége tested (during the T phase) at these
positions. After completion of this stage subjemtisered transfer stage T1, in which the test
location was moved to the mirror-symmetric locaiiothe contralateral field, i.e. the LVF in C1
and the RVF in C2. Finally, in stage T2 the tesat®on was moved to the central position for
both groups.

Experiment 2 compared two conditions, in which saty always learnt the patterns
(during the L phase of each learning unit) in dirdew. During the induction stage of this
experiment, both groups were also tested at theatéocation. During T1 the test location in
condition C1 was moved to the RVF, while it wadtsld to the LVF in condition C2. Finally,
during T2 the test location was moved to the misymmetric position in the contralateral field,
i.e. into the LVF in C1 and into the RVF in C2.

In Experiment 3 the same sequence of test locati@ssused as in Experiment 2. In
contrast to the latter, however, shifts of the kesation were always accompanied by identical
shifts of the learning location. Thus learning aesting always occurred at the same position

throughout the experiment.

(d) Data analysis
Observer performance was assessed in terms oirlgamme (i.e., the number of learning units
required to reach the learning criterion), andeinmis of the relative frequencies of a correct
response during the three stages of each expetiment

In order to obtain robust estimates for the traresfeoss stages time-normalized learning
curves were derived for each subject from the sefipercent-correct scores obtained during the
test phase of each learning unit. This was dormputing averages for each decile of learning
units (or quartile, if the learning duration wasddahan 10 units). The first and last of these
averages were used as anchor values to assesssigdn between induction stage and transfer
stage T1, and between transfer stage T1 and trestatge T2. The same anchor values served to

evaluate learning rate, defined by the ratio ofdtiterence between the anchors within each
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stage and the absolute number of intervening legranits.

To track the development of internal class repregmns during learning individual
confusion-error matrices representing the averagheé first and last decile (quartile) of learning
units were computed. The group means of these gratnvere analysed in terms of a
probabilistic virtual prototype model (Juttner &Rechler 1996, 2000). The model provides a
technique to visualize changes in the similaritycure and dimensionality of the conceptual
space during learning and has been shown to yfeldtasks involving the perceptual
classification of Gabor patterns, a more parsimasatescription than multidimensional scaling
(Unzickeret al.1998). Internal representations of pattern clagsemodelled as distributions of
feature vectors around a mean vector, the so-caligdal class prototype, and human
classification is described in terms of a Bayesiassifier operating on such representations.
Distances between virtual prototypes reflect thregiged similarity between the corresponding
class concepts and are varied to minimize the regaared error between observed and model-

predicted classification frequencies.

3. RESULTS

(a) Experiment 1

In Experiment 1 subjects saw the patterns eithtra right visual field (condition C1) or in the
left visual field (condition C2) during the leargiphase of each learning unit (figutie, top).
They were subsequently tested at the same lod@iomg the induction stage IN), the mirror-
symmetric location in the contralateral field (dwyitransfer stage T1) and the fovea (during
transfer stage T2). In each stage observers warett to criterion.

Figure 3a shows the individual, time-normalized learningvas as well as the mean
classification performance in each learning coaditit the beginning and end of the three stages.
Following the increase during the induction stggeformance significantly drops (F(1,8)=8.17,
P<0.05, repeated-measurement ANOVA, mixed desigrple contrasts) as the test location is
moved to the mirror-symmetric position in the caidteral field at the beginning of T1.
However, as the training at the original locatie@mtinues, performance at the test location is
gradually restored indicating an increased robsstie spatial displacement. Shifting the test
location to the fovea in T2 produced no significg(tL,8)=1.05, P=0.99) change in recognition

accuracy suggesting a perfect transfer of classiin performance. There were highly
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significant improvements of performance both duriiy (F(1,8)=12.10, P<0.01) and T2
(F(1,8)=51.50, P<0.001). These improvements werngaed in absence of any feedback at the
new test locations, thus ruling out any explanatiterms of position-specific learning.

Generally, learning the patterns in the left vidiedd (LVF) led to a better transfer than
learning in the right visual field (RVF). The effeaf learning condition on classification
performance was highly significant both for thensiéion between IN and T1 (F(1,8)=5.71,
P<0.001) and for the transition between T1 and F@,8)=20.91, P<0.001), whereas the
interaction Transition x Condition was not (P>0.The difference between the two learning
conditions becomes prominent in learning time,aatkd by the number of learning units needed
to reach the criterion (figur&c). Subjects learning the patterns in the LVF (C3rav
significantly faster than those learning the patien the RVF (C1) to learn the patterns in the
new test locations in transfer stage T1 (t(8)=3p&x).05) and T2 (t(8)= 2.72, p<0.05).

To track the conceptual space, i.e. the perceivedasity structure of the pattern
categories, during learning we reconstructed irlectass representations from the confusion
matrices using a probabilistic virtual prototype dab (Jittner & Rentschler 1996, 2000).
Compared to the two-dimensional configuration & thass means in the defining physical
feature space (cf. figurks), the configurations of the virtual prototypes eapdegenerated to
almost one-dimensional arrangements at the begjrofifl (solid triangles in figurgb). This
deformation, which is more strongly pronouncedandition C1 than in C2, indicates a reduced
perceptual dimensionality of the conceptual spadbeanew test location. However, further
learning restores conceptual space relative tacdméiguration in the defining feature space
(dashed triangles in figuB), which is preserved in T2, again indicating th@easing degree of

shift invariance of internal class concepts.

Experiment 2

In Experiment 1 testing in foveal vision always &eded testing in extrafoveal vision in both
conditions. Although patterns in extrafoveal viegviwere re-scaled in size in order to
compensate for differences in terms of spatial liem (Rovamo & Virsu 1979), the
performance increase in T2 relative to T1 may ksted to a scale-invariant advantage of foveal
vision for pattern categorization (Juttner & Rehtsc 2000) rather than an increasing degree of

shift invariance of the internal class represeoteti Experiment 2 therefore employed a
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complementary presentation sequence, where sulgacted the patterns in foveal view during
the induction stage, before being tested for siggizeralisation in extrafoveal vision, both in the
LVF and in the RVF, in either order (figudd, middle).

Owing to the foveal viewing, recognition accuranylxperiment 2 rapidly increases
during induction, which is evident already in tlvstfdecile of learning units during that stage
(figure 4a). Moving the test location into the extrafoveaual field (T1) led to a sharp initial
drop in classification performance. However, addheal learning continued, performance at the
test location was fully restored. Shifting the tesation to the mirror-symmetric location in the
contralateral field (T2) still produced a signifitgF(1,8)=22.73, P<0.001) drop in recognition.
However, despite the large shift performance leatlthe beginning of T2 are significantly
higher than at the beginning of T1 (F(1,8)=12.980.B1) indicating the increase of position
invariance of internal representations of pattetegories.

Learning condition had no significant effect onssliication performance in Experiment
2. However, it had some effect on learning timstage T2 (figurdb, top). Patterns that after the
foveal induction stage had been transferred tolL¥iE were significantly faster learned
(t(8)=3.32, P<0.05) when subsequently transfewdld RVF (condition C2) than when shown
in the reverse order (condition C1). However, ngngicant difference between learning
conditions was observed during T1, which sugges&d even a relatively brief foveal

familiarisation distinctly reduces visual field asmetry in pattern category learning.

Experiment 3

The results of Experiment 1 and 2 indicate thaaddition to the increasing degree of position
invarianceat the beginningof the two transfer stages (notably T2), thera isignificant
improvement of recognition performandering both transfer stages, even though subjects
receive no feedback at the novel test locationsagsess the magnitude of this feedback-free
learning effect, a control experiment was perforimeahich the sequence of test locations was
identical to that in Experiment 2 but accompanigaimultaneous shifts of learning location,
thus providing a feedback-driven reference conditidccordingly, learning and testing in
Experiment 3 first occurred in foveal and thenxtrafoveal view, both in the LVF and in the
RVF, in either order (figurb, bottom). Overall learning duration in Experimeend 3 (figure

4b, top) show similar patterns. The slight reductiorthe latter relative to the former can be
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related to the distinct carry-over effects in Expent 3 at the beginning of T1 and T2, which
exceed the transfer observed in Experiment 2 @day. However, a comparison of the average
learning rates in T1 and T2 (figuddb, bottom) showed no significant differences between
Experiment 2 and 3 (Ps >0.73). Thus the feedbaskimprovement of recognition performance
in Experiment 2 induced by category learning axed location in the visual field proceeds at a
rate no slower than the improvement observed watitipn-specific feedback. No left-right
asymmetry was observed in Experiment 3, in accaelaith the learning data for the induction

stage in Experiment 1 and 2.

4. DISCUSSION

Our results indicate that knowledge about pattategories acquired at one particular location in
the visual field gradually becomes available ateotlocations. This allows us to reconcile
apparently contradictory findings of, on the onadaa limited translation invariance of human
object recognition observed in tasks involvinggratdiscrimination (Foster & Kahn 1985; Nazir
& O'Regan 1990; Dill & Fahle 1997, 1998), and tbbustness of recognition against spatial
displacements found for familiar objects (Elk$ al. 1989; Biederman & Cooper 1991,
Stankiewicz & Hummel 2002) on the other hand. Imcayvdance with the former we observed an
initial drop of performance as learning and tesatmn became dissociated from each other (cf.
beginning of transfer stage T1 in figurés and4a). However, as the learning at the original
location continued, performance at the test locatias gradually restored to criterion level and
showed increased robustness against further desplaat (in transfer stage T2).

Our experiments differ from earlier work, which Hasussed on the position invariance
of pattern discrimination in same-different matghiasks that either avoided learning (Foster &
Kahn 1985; Dill & Fahle 1998, Dill & Edelman 200dyrestricted learning processes to typical
durations of less than one hour (Nazir & O'Reg@801 Dill & Fahle 1997). In contrast, we
employed a paradigm of long-term category learttadjinvolved three pattern classes defined
by multiple exemplars and extended over severa ttayup to eleven hours (median: 6.8 hours
and 3.5 hours in Exp. 1 and 2, respectively) @ltearning time. Throughout Experiment 1 and
2 subjects only received feedback about categomylmaeship at the original learning location but
not at the test location. Learning progress atakelocation therefore was not a practice effect

owing to position-specific feedback. The translaéilainvariance observed for category learning

10
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in the present experiments stands in marked cdntrdse positional specificity that has been
observed for a range of other perceptual learmiskst (Karni & Sagi 1991; Shiu & Pashler 1992;
Fahleet al. 1995), even though recent evidence suggestsdtegary learning may affect even
early perceptual processing (Notman et al., 2005).

Further evidence for the crucial role of catedearning in the acquisition of position
invariance comes from the advantage of the LVFtikgao the RVF for the learning and
generalisation of novel patterns. As our stimulaggyns, both within and between categories,
only differed in terms of the spatial relationshiiggween their constituting part components, the
results are compatible with previously reported dwsbural dissociations showing a LVF
advantage for the processing of metric coordinepgasentations (Kosslet al. 1989) and
exemplar-specific encoding of pattern categoriegr@dlek 1999). This asymmetry can be related
to the predominant activation of right prefrontabgparietal areas reported in neuroimaging
studies for tasks involving visual reasoning (Segjat, 2000) and visuospatial working memory
(Jonide=et al.1993; Smith & Jonides 1997). In contrast, a lefsdlateral prefrontal activation
has been found for tasks involving analytic probsstving (Smith & Jonides 1997) and formal
reasoning (Wharton & Grafman 1998). For visual neéay, this activation shows a distinct
dependency on learning status (Segeral. 2000) and might indicate a left-hemispheric
specialisation for the formation of abstract categg(Marsolek 1999). The bilateral stimulation
mediated by the foveal learning in Experiment 2 fiaajlitate the recruitment of predominantly
left-hemispheric mechanisms involved in categorgti@etion and their interaction with the
image-based processing of individual category exaragpredominantly located in the right-
hemisphere, thus yielding an attenuation of behagidateralisation with increasing learning
progress. Consistent with this interpretation ghey-level categorization of familiar patterns or
objects often shows no visual-field asymmetry imnmal subjects (e.g., Peterzetl al. 1989;
Biederman & Cooper 1991).

Insight into how category learning induces positiovariance in object recognition is
provided by computer simulations performed in easork involving the same type of stimulus
material (Juttneet al. 1997, 2004; Rentschler & Juttner 2005). These lsitimns suggest that
category learning of Compound Gabor gratings reliesroduction rules that combine multiple
attributes representing either properties of irdlral pattern parts or those of part relations. The

distinction between two attribute formats allowsaitcount for variations in the degree of

11
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perceptual invariance. In the present experimargart-specific encoding of visual field position
of individual pattern components would yield rulleat are highly location specific, whereas an
encoding of relative position for adjacent compdsevould produce rules that are translation
invariant. These different ways of encoding posgianformation may have a correspondence in
the systematic change of receptive field propegieag the higher stages of the ventral visual
pathway in primates involving area V4, the postefid=O) and the anterior (TE) region of the
inferotemporal cortex. Cells in TEO and V4 have Benaeceptive fields and a preference for
simple patterns (Kobatake & Tanaka 1994), and thag serve the extraction of part-specific
information. In contrast, cells within TE tend taMe large receptive fields that often include the
fovea (Itoet al. 1995). Nevertheless, such cells show a far greetesitivity to retinal position
than predicted by receptive field size (Rellsl.2003). Their preference for complex configural
patterns rather than isolated pattern componeatsgai@a 1996) suggests that these cells may play
an important role in the representation of partrehal information.

A shift in the format of positional information dng category acquisition would then
become manifest in an emerging position invariaiegsual recognition without requiring any
position-specific feedback. Adaptive use of muétifgdatures during category learning has been
previously demonstrated behaviourally in humanssf@ifisky 1986; Schynst al. 1998; Op de
Beecket al. 2003) and, at a behavioural as well as neuroploggaal level, in monkeys
(Freedmaret al.2001; Sigala & Logothetis 2002). For foveal viegrime have recently shown
that flexible use of position-indexing during legmgy can explain the acquisition and
generalisation of mirror-image categories (Rentsc&l Jittner 2007). Similar considerations
with regard to appearance-related attributes maguat for other phenomena of perceptual
invariance, such as against changes in contraatigolJuttneret al. 2004).

Current approaches to object recognition and utalelghg generally assume that
position invariance is achieved at an early leveligual processing and reflects an automatic,
adaptive response to the spatiotemporal statistitee visual environment (e.g. Wallis & Rolls
1997; Riesenhuber & Poggio, 1999; Wiskott & Sejnavi2002;Coxet al, 2005). Against this
background our findings add a novel perspectivethay demonstrate that invariance to
positional changes is also a by-product of thedoywn structuring of the visual world imposed
by the process of category acquisition. In this wagsition invariance induced by category

learning might act complementary to invariance na@gms of more limited scope, which may

12
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be active at early and intermediate levels of f@aprocessing and result from a conjunctive
sampling of the visual field (Riesenhuber & Pogh@®9) or partial generalizations built upon

past sensory experience (Ullman & Soloviev 1999).
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Figure captions

Figure 1.(a) A set of fifteen compound Gabor gratings, consistifie fundamental plus its third
harmonic within a Gaussian aperture, served asilgastimuli in the experiments. Stimulus
variation was restricted to the amplitud@nd phase angle of the third harmonic. Thus the
configural structure of each greylevel pattern gliig horizontal axis was uniquely determined
by its coordinates=b cos and =bsin in atwo dimensional Fourier feature space. Within
this feature space, the fifteen learning stimutirfed three cluster of equal variance defining
three classes (1,2,3) to be learned by the sul§eate: 1 unit = 20 cd/m(b) Illustration of the

actual greylevel representations of the patterns.

Figure 2. (a) Interleaved learning and testing schedule. Subjpete trained to criterion in a
series of learning units, each having a learnirgspl{L), during which patterns of the learning
set were randomly presented followed by their groeding class label, and a test phase (T),
during which observers had to categorize each &isn(b) In Experiment 1 (top) and 2 (middle),
viewing location during the learning phase of el@atnning unit was kept constant, whereas the
location during the test phase was systematicaliygd between locations in the left visual field
(LVF), the right visual field (RVF), and the cenrtpasition. For example (see inset), in condition
C2 of Experiment 1 the patterns were always presentthe LVF during the learning phase of
each learning unit, whereas testing successivelglved locations in the LVF (during the
induction stage IN), the RVF (transfer stage T the centre (transfer stage T2). Experiment 3
(bottom) replicated the sequence of test locativExperiment 2, however learning and testing

always occurred at the same position.

Figure 3.(a) Asymmetric effects of extrafoveal pattern catedeayning in the right (condition
C1) and left (C2) visual field on position-invar@ Individual time-normalized learning curves
of ten subjects derived from the average percemecbscores across each decile of learning
units. Symbols show group means for each conditidime first and last decile of each stage. The
horizontal dashed line indicates chance level. Nlo¢edissociation of the curves in the two
conditions, even though performance in both grampsoves in the absence of location-specific

feedback during T1 and Tf) Visualization of the similarity structure betweaternal class
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representations in terms of a virtual-prototype el¢see Material and Methods). As indicated
each prototype configuration corresponds to theignmean of the first or last decile of the
learning curves shown i(a), with e denoting the root of the mean squared error betwee
observed and model-predicted classification fregigsn Compared to the configuration of the
class means in physical feature space (dashedyleiaaf. figurel), the virtual prototype
configurations for subjects in condition C1 appearticularly degenerated, mainly due to an
insufficient separation of class 2 and clas&BMean number of learning units (LUS) to reach
the learning criterion in the three stages of ttpeeiment. Subjects learning the stimuli in the lef
visual field (C2) show a significantly better tréarsto the new locations tested in T1 and T2.

Error bars indicatel s.e. of the mean.

Figure 4. (a) Spatial generalisation of foveal pattern catedeayning in extrafoveal vision.
Coloured symbols show group means of classificagienformance in the first and last decile of
learning units for the two learning conditions irperiment 2. Percent-correct scores show a
distinct drop at the beginning of T2. However, afdreal classification accuracy becomes
increasingly less susceptible to positional chaagdsveal learning continues, as a comparison
with the corresponding performance scores of areafe condition with no separation of
learning and test location (Experiment 3, black amite symbols) demonstratg$) Mean
learning time (top) and mean learning rate (botteamlExperiment 2 and 3. Note that the
feedback-free learning during T1 and T2 in Expenitn2 proceeds at the same rate as the

feedback-driven learning in Experiment 3. Errorsbadicatet1 s.e. of the mean.
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